

SESAR Innovation Days

MODELLING AND EXPLAINABILITY

Session chair: George Vouros

University of Piraeus

5-8 December 2022, Budapest

Hosted by

EUROPEAN PARTNERSHIP

Co-funded by the European Union

SESAR Innovation Days

"Transparency & Explainability in higher levels of automation in the ATM domain"

María Florencia Lema Esposto

R&D Aeronautical Engineer | CRIDA

5-8 December 2022, Budapest

Hosted by

EUROPEAN PARTNERSHIP

Co-funded by the European Union

María Florencia Lema Esposto

12th SESAR Innovation Days 5-8 December 2022, Budapest

Selection and development of suitable and explainable AI/ML prototypes for two operational cases:

ATFCM & CD&R

Exploration of AI/ML transparency/explainability for automated systems to be acceptable and trustworthy by ATM operators Identification of principles and criteria for AI/ML transparency/explainability in ATM domain scenarios

2/10

12th SESAR Innovation Days 5-8 December 2022, Budapest

3/10

12th SESAR Innovation Days 5-8 December 2022, Budapest

HungaroControl

DIGITAL ACADEM

Transparency

Explainability

12th SESAR Innovation Days 5-8 December 2022, Budapest

HungaroControl

TAPAS

12th SESAR Innovation Days 5-8 December 2022, Budapest

ATFCM

TAPAS

CD&R

3-day trials with FMP experts from the Spanish ANSP (ENAIRE)

CD&R

Two en-route sectors of Madrid ACC:

- Domingo upper (LECMDGU)
- Toledo upper (LECMTLU)

3-day trials with operational ATCOs and ATC instructors

8/10

12th SESAR Innovation Days 5-8 December 2022, Budapest

Conclusions

Trust prevails over explanations during real time operations

Time horizon dictates level of explainability

Traceability is key for transparency

Accuracy comes before any means of transparency

Complexity is a challenge to understanding

9/10

Thank you for your attention!

Visit our social media!

10/10

12th SESAR Innovation Days 5-8 December 2022, Budapest

SESAR Innovation Days

"Explainable Metamodels for ATM Performance Assessment"

Tatjana Bolic

Senior Research Fellow/ATM | University of Westminster

5-8 December 2022, Budapest

Hosted by

EUROPEAN PARTNERSHIP

Co-funded by the European Union

Explainable Metamodels for ATM Performance Assessment

Tatjana Bolić, University of Westminster SESAR Innovation Days 7 December 2022 Budapest, Hungary

EUROPEAN PARTNERSHIP

Problem

- Air traffic systems are hard to model
- Simulation approaches are a common modelling solution
- Such tools offer little room for understandability, transparency and interpretability (black-box)
- Simulation models can become computationally expensive

Aims

• Enhance explainability of simulation models and simulation-based studies

Improve exploration of simulation models, reducing computational costs

Solution

Combination of two techniques:

- A. Simulation metamodelling
- **B. SHAP values analysis**

A. Simulation Metamodelling

• Explicit approximation of simulation models

JOINT UNDERTAKING

B. SHAP values

- SHapley Additive exPlanations
- Traditionally used to address lack of explainability of ML/AI models
- Systematic framework for quantifying the individual contribution or impact that each input variable has on the output(s)
- Enhances the understanding of the associated interactions and, ultimately, the overall explainability of a given arbitrary model

Proposed Methodology

Experimental Setup

- ATM simulation model: Mercury
- Daily operations at Charles De Gaulle aiport
- Historical data from 12 September 2014: flights, origin-destination, routes, aircraft types, estimated cruise wind, distributions on climb and descent profiles, etc.

Case studies and variables of interest

A. UDPP (passenger arrival delay as KPI)

B. E-AMAN (planned absorbed delay as KPI)

Variable	Description	Theoretical range	Practical range	Default
Fuel price	Price of one kg of fuel.	$[0, \infty)$ [GlobalOpt,	[0, 5]	1
Hotspot solver	Type of solver in the hotspot.	NNBound, UDPP, ISTOP]	NA	ISTOP
Planning horizon	Distance horizon where the EAMA tries to opti- mize the arrival, in NM.	(100, ∞)	[100, 1000]	300
Cruise uncertainty	Deviation in the aircraft speed during cruise.	$[0, \infty)$	[0, 10]	1
Turn-around time scale	Scaler of mean of the distribution of turn-around times.	$[0,\infty)$	[0, 10]	1
Minimum connecting time scale	Scaler of mean of the distribution of passenger minimum connecting times.	[0 , ∞)	[0, 10]	1
Claim rate	Proportion of passengers claiming compensation.	[0, 1]	[0, 1]	0.14

TABLE I. VARIABLES USED IN THE CASE STUDIES.

12th SESAR Innovation Days 5-8 December 2022, Budapest

Optimizing the metamodel

- XGBoost (Extreme Gradient Boosting) as metamodel
- 50k simulation points set for training
- 10k simulation points for testing
- Hyperparameter tunning with grid search

SAS

JOINT UNDERTAKING

12th SESAR Innovation Days

5-8 December 2022, Budapest

JOINT UNDERTAKING

B. E-AMAN Case Study

12th SESAR Innovation Days 5-8 December 2022, Budapest

B. E-AMAN Case Study

12th SESAR Innovation Days 5-8 December 2022, Budapest

Conclusion and Future Work

- Unified framework integrating SHAP values with simulation metamodels to create explainable metamodels
- Making simulation results more explainable, facilitating interpretation
- To be used as a complement to traditional simulation-based studies
- Enhancement of scenario-based and what-if analyses
- Plan to extend the current methodology to encompass active learning

Acknowledgments

 NOSTROMO (Next-generation Open-Source Tools for ATM PeRfOrmance Modelling and Optimisation) project, framed in the scope of the SESAR 2020 Exploratory Research topic SESAR-ER4-26-2019, `ATM Validation for a Digitalised ATM,' with focus on the `Macro-modelling applied to Air Traffic Management' area and funded by SESAR Joint Undertaking through the European Union's Horizon 2020 research and innovation programme under grant agreement No 892517.

THANK YOU FOR YOUR ATTENTION

EUROPEAN PARTNERSHIP

SESAR Innovation Days

"Active Learning Metamodelling for R-NEST"

Raquel Sánchez

R&D Data Scientist | Nommon

5-8 December 2022, Budapest

Hosted by

EUROPEAN PARTNERSHIP

Co-funded by the European Union

SIMBAD

Active Learning Metamodelling for R-NEST

R. Sánchez-Cauce, C. Riis, F. Antunes, D. Mocholí, O. G. Cantú Ros, F. Câmara Pereira, R. Herranz, C. Lima Azevedo

12th SESAR Innovation Days 5-8 December 2022, Budapest

The problem

Microsimulation models are usually the only feasible and reliable way to assess the performance impact of new ATM concepts and solutions

When embedded with enough detail, computational cost is often a barrier for a comprehensive assessment of ATM solutions

- Simulations are necessarily restricted to a limited number of scenarios, often insufficient to obtain conclusive results
- There is an interest in picking only the most informative instances

An integrated approach combining active learning and simulation metamodelling to translate a complex simulation model into a metamodel

Active learning metamodelling

Simulation metamodel: simplified version that emulates the behavior of the original model, reducing the (expensive) simulation process

Training a metamodel usually requires running the simulation model many times. This task is quite inefficient in many cases

Active learning makes it possible to reduce the number of required model runs by selecting the most informative points

Active learning process

Implementation

- Metamodels for the **R-NEST** simulation tool
- Tested with the **Demand and Capacity Balancing (DCB)** SESAR solution:
 - Dynamic Airspace Configuration (DAC) + Short Term ATM Measures (STAM)
 - **DAC**: increase the granularity and flexibility in the airspace configurations that can be used by ANSPs
 - **STAM** measures: smooth ATCo workload by reducing traffic complexity and peaks through the short-term application of minor ground delays and horizontal and vertical re-routings
- Two use cases:
 - One-day R-NEST metamodel
 - AIRAC cycle R-NEST metamodel

R-NEST

- EUROCONTROL research simulation tool
- Performance assessment of advanced ATM concepts
- Dynamic simulation of network operations and prediction of different types of delays

One-day R-NEST metamodel

- Inputs:
 - minimum opening duration of the configurations for the opening scheme (OS)
 - minimum opening duration of the sectors for the OS
- Outputs:
 - Network punctuality: average departure delay per flight (PUN1 KPI)
 - Cost-efficiency: number of flights per ATCO-Hour on duty (CEF2 KPI)

Day R-NEST metamodel

12th SESAR Innovation Days 5-8 December 2022, Budapest

Metamodel implementation

- The metamodel is defined for the **5th July 2019**
- The lower and east cluster of **Bordeaux ACC** is selected
- DCB implementation:
 - 1. DAC: Define the OS (configurations and sectors):
 - i. Configurations (minutes): [10, 300] in 10-steps
 - ii. Sectors (minutes): [10, 300] in 10-steps(restriction sectors ≥ configurations)
 - 2. STAM: Once the OS is defined, perform the STAM simulation

Results – One-day R-NEST metamodel

12th SESAR Innovation Days

5-8 December 2022, Budapest

AIRAC-cycle R-NEST metamodel

- Extend the R-NEST metamodel to the whole 7th AIRAC
- Using AIRAC representative days* and the metamodelling methodology:
 - Identify the different traffic patterns in a region
 - For each pattern observed, select a set of representative days
 - Train the metamodel with the set of representative days

*using the methodology developed in:

Sánchez-Cauce, R., Mocholí, D., Cantú Ros, O. G., Herranz, R., Rodríguez, R., Tello, F., & Fabio, A. (2022). Identification of Traffic Patterns and Selection of Representative Traffic Samples for the Assessment of ATM Performance Problems. In 12th SESAR Innovation Days (SIDs)

Extended R-NEST metamodel

	10/07/2019	30/06/2019	29/06/2019	15/07/2019	20/06/2019	02/07/2019
Temporal	Summer days	Winter days	Summer	Winter	No temporal	Summer
period	Summer days	(Jan., Feb, Mar.)	weekends	working days	pattern	working days
Efficiency	Medium values	The lowest values	Low values	Medium values	The highest values	Very high values
Predictability	Low values	The lowest values	Low values	The highest values	High values	Very high values
Regulations	Large delays due to non-ANS	No delays due to MET & non-ANS	Large delays due to ANS	No MET regulations		Very large delays due to ANS & MET

- Train the metamodel for the representative days of the Bordeaux ACC
- Add the hourly traffic counts of the day in the Bordeaux ACC as inputs of the metamodel

Extended R-NEST metamodel concept

5-8 December 2022, Budapest

IOINT UNDERTAKING

Results – AIRAC R-NEST metamodel

65 points were used to train this metamodel (**2.36%**)

Predictive performance assessment on the validation set with the representative days:

	PUN1	CEF2
RMSE	5.66	0.24
MAPE	0.306	0.015

12th SESAR Innovation Days

5-8 December 2022, Budapest

Results – AIRAC R-NEST metamodel

Predictive performance assessment on the validation set with other days of the AIRAC cycle:

	PUN1	CEF2
RMSE	3.23	0.61
MAPE	0.247	0.035

Conclusions

- The one-day R-NEST metamodel has good predictive performance
- The AIRAC cycle R-NEST metamodel reaches good predictive results for the CEF2 variable in the validation set with the representative days. For the PUN1 variable, the results are worse
- The results of the AIRAC cycle R-NEST metamodel for the validation set with different days are worse
 - > The metamodel has not enough information to accurately generalize
- The results obtained show the **potential of the proposed methodology**

Future work

- To improve the performance of the AIRAC cycle R-NEST metamodel and further demonstrate the presented metamodelling approach:
 - $\circ\,$ enlarge the training set with more points
 - \circ take more representative days (the days of the AIRAC with the lowest silhouette score per cluster)
- Extend the metamodel for the whole year
- Explore the applications of active learning metamodelling: e.g., optimal scenario discovery

SIMBAD

Thank you very much for your attention!

12th SESAR Innovation Days 5-8 December 2022, Budapest

SESAR Innovation Days

COMFORT BREAK

5-8 December 2022, Budapest

Hosted by

EUROPEAN PARTNERSHIP

Co-funded by the European Union